Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).
Google Scholar
Gadagkar, V. et al. Dopamine neurons encode performance error in singing birds. Science 354, 1278–1282 (2016).
Google Scholar
Zhuo, Y. et al. Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 21, 680–691 (2024).
Google Scholar
Chen, R. & Goldberg, J. H. Actor–critic reinforcement learning in the songbird. Curr. Opin. Neurobiol. 65, 1–9 (2020).
Google Scholar
Joel, D., Niv, Y. & Ruppin, E. Actor–critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw. 15, 535–547 (2002).
Google Scholar
Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998).
Botvinick, M. et al. Reinforcement learning, fast and slow. Trends Cogn. Sci. 23, 408–422 (2019).
Google Scholar
Wickens, J. R., Reynolds, J. N. & Hyland, B. I. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol. 13, 685–690 (2003).
Google Scholar
Costa, R. M. Plastic corticostriatal circuits for action learning: what’s dopamine got to do with it? Ann. N. Y. Acad. Sci. 1104, 172–191 (2007).
Google Scholar
Jarvis, E. Vocal learning and spoken language. Science 366, 50–54 (2019).
Google Scholar
Davenport, M. H. & Jarvis, E. D. Birdsong neuroscience and the evolutionary substrates of learned vocalization. Trends Neurosci. 46, 97–99 (2023).
Google Scholar
Konopka, G. & Roberts, T. F. Insights into the neural and genetic basis of vocal communication. Cell 164, 1269–1276 (2016).
Google Scholar
Prather, J., Okanoya, K. & Bolhuis, J. J. Brains for birds and babies: neural parallels between birdsong and speech acquisition. Neurosci. Biobehav. Rev. 81, 225–237 (2017).
Google Scholar
Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).
Google Scholar
Brainard, M. S. & Doupe, A. J. Translating birdsong: songbirds as a model for basic and applied medical research. Annu. Rev. Neurosci. 36, 489–517 (2013).
Google Scholar
Burke, J. E. & Schmidt, M. F. Neural control of birdsong. eLS 1, 345–355 (2020).
Google Scholar
Person, A. L., Gale, S. D., Farries, M. A. & Perkel, D. J. Organization of the songbird basal ganglia, including area X. J. Comp. Neurol. 508, 840–866 (2008).
Google Scholar
Lovell, P. V. et al. ZEBrA: Zebra finch Expression Brain Atlas—a resource for comparative molecular neuroanatomy and brain evolution studies. J. Comp. Neurol. 528, 2099–2131 (2020).
Google Scholar
Tumer, E. C. & Brainard, M. S. Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong. Nature 450, 1240–1244 (2007).
Google Scholar
Andalman, A. S. & Fee, M. S. A basal ganglia–forebrain circuit in the songbird biases motor output to avoid vocal errors. Proc. Natl Acad. Sci. USA 106, 12518–12523 (2009).
Google Scholar
Duffy, A., Latimer, K. W., Goldberg, J. H., Fairhall, A. L. & Gadagkar, V. Dopamine neurons evaluate natural fluctuations in performance quality. Cell Rep. 38, 110574 (2022).
Google Scholar
Roeser, A. et al. Dopaminergic error signals retune to social feedback during courtship. Nature 623, 375–380 (2023).
Google Scholar
Hisey, E., Kearney, M. G. & Mooney, R. A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning. Nat. Neurosci. 21, 589–597 (2018).
Google Scholar
Xiao, L. et al. A basal ganglia circuit sufficient to guide birdsong learning. Neuron 98, 208–221 (2018).
Google Scholar
Hoffmann, L. A., Saravanan, V., Wood, A. N., He, L. & Sober, S. J. Dopaminergic contributions to vocal learning. J. Neurosci. 36, 2176–2189 (2016).
Google Scholar
Fee, M. S. & Goldberg, J. H. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience 198, 152–170 (2011).
Google Scholar
Mackevicius, E. L. & Fee, M. S. Building a state space for song learning. Curr. Opin. Neurobiol. 49, 59–68 (2018).
Google Scholar
Doya, K. & Sejnowski, T. A novel reinforcement model of birdsong vocalization learning. In Adv. Neural Information Processing Systems 7 (NIPS 7) (eds Tesauro, G. et al.) 101–108 (MIT Press, 1995).
Tchernichovski, O., Mitra, P. P., Lints, T. & Nottebohm, F. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569 (2001).
Google Scholar
Kollmorgen, S., Hahnloser, R. H. R. & Mante, V. Nearest neighbours reveal fast and slow components of motor learning. Nature 577, 526–530 (2020).
Google Scholar
Funabiki, Y. & Konishi, M. Long memory in song learning by zebra finches. J. Neurosci. 23, 6928–6935 (2003).
Google Scholar
Steinfath, E., Palacios-Munoz, A., Rottschafer, J. R., Yuezak, D. & Clemens, J. Fast and accurate annotation of acoustic signals with deep neural networks. eLife 10, e68837 (2021).
Google Scholar
Lerner, T. N., Holloway, A. L. & Seiler, J. L. Dopamine, updated: reward prediction error and beyond. Curr. Opin. Neurobiol. 67, 123–130 (2021).
Google Scholar
Toutounji, H., Zai, A. T., Tchernichovski, O., Hahnloser, R. H. R. & Lipkind, D. Learning the sound inventory of a complex vocal skill via an intrinsic reward. Sci. Adv. 10, eadj3824 (2024).
Google Scholar
Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).
Google Scholar
Adam, I. et al. Daily vocal exercise is necessary for peak performance singing in a songbird. Nat. Commun. 14, 7787 (2023).
Google Scholar
Fiete, I. R., Fee, M. S. & Seung, H. S. Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. J. Neurophysiol. 98, 2038–2057 (2007).
Google Scholar
Ikeda, M. Z., Trusel, M. & Roberts, T. F. Memory circuits for vocal imitation. Curr. Opin. Neurobiol. 60, 37–46 (2019).
Google Scholar
Louder, M. I. M. et al. Transient sensorimotor projections in the developmental song learning period. Cell Rep. 43, 114196 (2024).
Google Scholar
Tian, J. et al. Distributed and mixed information in monosynaptic inputs to dopamine neurons. Neuron 91, 1374–1389 (2016).
Google Scholar
Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).
Google Scholar
Chen, R. et al. Songbird ventral pallidum sends diverse performance error signals to dopaminergic midbrain. Neuron 103, 266–276 (2019).
Google Scholar
Kearney, M. G., Warren, T. L., Hisey, E., Qi, J. & Mooney, R. Discrete evaluative and premotor circuits enable vocal learning in songbirds. Neuron 104, 559–575 (2019).
Google Scholar
Bottjer, S. W., Brady, J. D. & Cribbs, B. Connections of a motor cortical region in zebra finches: relation to pathways for vocal learning. J. Comp. Neurol. 420, 244–260 (2000).
Google Scholar
Mandelblat-Cerf, Y., Las, L., Denisenko, N. & Fee, M. S. A role for descending auditory cortical projections in songbird vocal learning. eLife 3, e02152 (2014).
Google Scholar
Schrittwieser, J. et al. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 588, 604–609 (2020).
Google Scholar
Fawzi, A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47–53 (2022).
Google Scholar
Markowitz, J. E. et al. Spontaneous behaviour is structured by reinforcement without explicit reward. Nature 614, 108–117 (2023).
Google Scholar
Colquitt, B. M., Merullo, D. P., Konopka, G., Roberts, T. F. & Brainard, M. S. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science 371, eabd9704 (2021).
Google Scholar
Pfenning, A. R. et al. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346, 1256846 (2014).
Google Scholar
Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B. & Mitra, P. P. A procedure for an automated measurement of song similarity. Anim. Behav. 59, 1167–1176 (2000).
Google Scholar
Immelman, K. in Bird Vocalizations (ed. Hinde, R. A.) 64–74 (Cambridge Univ. Press, 1969).
Krzanowski, W. J. Principles of Multivariate Analysis: A User’s Perspective (Oxford Univ. Press, 1988).
Seber, G. A. F. Multivariate Observations (Wiley, 1984).
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
Google Scholar
Ljung, L. System Identification: Theory for the User (Prentice Hall, 1999).
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
Google Scholar