Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Google Scholar
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
Google Scholar
Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).
Google Scholar
Lu, C.-Y., Cao, Y., Peng, C.-Z. & Pan, J.-W. Micius quantum experiments in space. Rev. Mod. Phys. 94, 035001 (2022).
Google Scholar
Bedington, R., Arrazola, J. M. & Ling, A. Progress in satellite quantum key distribution. npj Quantum Inf. 3, 30 (2017).
Google Scholar
Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).
Google Scholar
Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).
Google Scholar
Ren, J.-G et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).
Google Scholar
Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).
Google Scholar
International space station. NASA https://www.nasa.gov/international-space-station/ (2025).
Gu, Y. The China space station: a new opportunity for space science. Natl Sci. Rev. 9, nwab219 (2022).
Google Scholar
Albulet, M. Spacex Non-geostationary Satellite System: Attachment A Technical Information to Supplement Schedules (US Federal Communications Commission, 2016).
Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In International Conference on Computer System and Signal Processing 175–179 (IEEE, 1984).
Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).
Google Scholar
Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020).
Google Scholar
Peng, C.-Z. et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007).
Google Scholar
Rosenberg, D. et al. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007).
Google Scholar
Liu, Y. et al. Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys. Rev. Lett. 130, 210801 (2023).
Google Scholar
Bennett, C. H. & Brassard, G. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. ACM SIGACT News 20, 78–80 (1989).
Google Scholar
Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).
Google Scholar
Schmitt-Manderbach, T. et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007).
Google Scholar
Sidhu, J. S. et al. Advances in space quantum communications. IET Quantum Commun. 2, 182–217 (2021).
Google Scholar
de Forges de Parny, L. et al. Satellite-based quantum information networks: use cases, architecture, and roadmap. Commun. Phys. 6, 12 (2023).
Google Scholar
Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).
Google Scholar
Liao, S.-K. et al. Space-to-Ground quantum key distribution using a small-sized payload on Tiangong-2 space lab. Chin. Phys. Lett. 34, 090302 (2017).
Google Scholar
Oi, D. K. et al. CubeSat quantum communications mission. EPJ Quantum Technol. 4, 6 (2017).
Google Scholar
Neumann, S. P. et al. Q3Sat: quantum communications uplink to a 3U CubeSat-feasibility & design. EPJ Quantum Technol. 5, 4 (2018).
Google Scholar
Kerstel, E. et al. Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration. EPJ Quantum Technol. 5, 6 (2018).
Google Scholar
Haber, R., Garbe, D., Schilling, K. and Rosenfeld, W. QUBE – a cubesat for quantum key distribution experiments. In Proc. 32nd Annual AIAA/USU Conference on Small Satellites, SSC18-III-05 (Utah State University, 2018).
Podmore, H. et al. Optical terminal for Canada’s Quantum Encryption and Science Satellite (QEYSSat). In Proc. 2019 IEEE International Conference on Space Optical Systems and Applications 1–5 (IEEE, 2019).
Miller, A. V. et al. Vector-towards quantum key distribution with small satellites. EPJ Quantum Technol. 10, 52 (2023).
Google Scholar
Ahmadi, N. et al. QUICK 3 design of a satellite based quantum light source for quantum communication and extended physical theory tests in space. Adv. Quantum Technol. 2300343, 1–9 (2024).
Google Scholar
Villar, A. et al. Entanglement demonstration on board a nano-satellite. Optica 7, 734 (2020).
Google Scholar
Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).
Google Scholar
Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).
Google Scholar
Tomamichel, M., Lim, C. C. W., Gisin, N. & Renner, R. Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012).
Google Scholar
Lim, C. C. W., Curty, M., Walenta, N., Xu, F. & Zbinden, H. Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014).
Google Scholar
Roberts, G. L. et al. Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution. Opt. Lett. 43, 5110 (2018).
Google Scholar
Agnesi, C., Avesani, M., Stanco, A., Villoresi, P. & Vallone, G. All-fiber self-compensating polarization encoder for quantum key distribution. Opt. Lett. 44, 2398 (2019).
Google Scholar
Li, Y. et al. High-speed robust polarization modulation for quantum key distribution. Opt. Lett. 44, 5262 (2019).
Google Scholar
Wang, X.-B., Peng, C.-Z., Zhang, J., Yang, L. & Pan, J.-W. General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A 77, 042311 (2008).
Google Scholar
Paraïso, T. K. et al. A photonic integrated quantum secure communication system. Nat. Photon. 15, 850–856 (2021).
Google Scholar
Liao, S.-K. et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509–513 (2017).
Google Scholar
Li, Y. et al. Space-ground QKD network based on a compact payload and medium-inclination orbit. Optica 9, 933 (2022).
Google Scholar
Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).
Google Scholar
Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).
Google Scholar
Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
Google Scholar
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Google Scholar
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Google Scholar
Luo, W.-B. et al. Research on polarization compensation for practical satellite-based quantum key distribution. Opt. Commun. 570, 130925 (2024).
Google Scholar
Zhang, L. et al. Design and in-orbit test of a high accuracy pointing method in satellite-to-ground quantum communication. Opt. Express 28, 8291–8307 (2020).
Google Scholar
Qian, Y. et al. Note: A 10 gbps real-time post-processing free physical random number generator chip. Rev. Sci. Instrum. 88, 096105 (2017).
Google Scholar
Herrero-Collantes, M. & Garcia-Escartin, J. C. Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017).
Google Scholar
Jiang, C., Yu, Z.-W. & Wang, X.-B. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation. Phys. Rev. A 95, 032325 (2017).
Google Scholar
Chau, H. F. Decoy-state quantum key distribution with more than three types of photon intensity pulses. Phys. Rev. A 97, 040301 (2018).
Google Scholar
Tomamichel, M. & Renner, R. Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011).
Google Scholar
Currás-Lorenzo, G. et al. Tight finite-key security for twin-field quantum key distribution. npj Quantum Inf. 7, 22 (2021).
Google Scholar
Jiang, C., Hu, X.-L., Yu, Z.-W. & Wang, X.-B. Composable security for practical quantum key distribution with two way classical communication. New J. Phys. 23, 063038 (2021).
Google Scholar
Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).
Google Scholar
Sidhu, J. S., Brougham, T., McArthur, D., Pousa, R. G. & Oi, D. K. Finite key performance of satellite quantum key distribution under practical constraints. Commun. Phys. 6, 210 (2023).
Google Scholar
Liao, S.-K. Data for ‘microsatellite-based real-time quantum key distribution’. Zenodo https://doi.org/10.5281/zenodo.14732295 (2025).