Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023).
Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).
Google Scholar
Rajczak, J. & Schär, C. Projections of future precipitation extremes over Europe: a multimodel assessment of climate simulations: projections of precipitation extremes. J. Geophys. Res. Atmos. 122, 10773–10800 (2017).
Google Scholar
Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).
Google Scholar
Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 26, 5015–5033 (2022).
Google Scholar
De Vries, I. E., Sippel, S., Pendergrass, A. G. & Knutti, R. Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. Earth Syst. Dyn. 14, 81–100 (2023).
Google Scholar
Zeder, J. & Fischer, E. M. Observed extreme precipitation trends and scaling in Central Europe. Weather Clim. Extrem. 29, 100266 (2020).
Google Scholar
Hofstätter, M., Lexer, A., Homann, M. & Blöschl, G. Large-scale heavy precipitation over Central Europe and the role of atmospheric cyclone track types. Int. J. Climatol. 38, e497–e517 (2018).
Google Scholar
Berg, P. & Haerter, J. O. Unexpected increase in precipitation intensity with temperature — a result of mixing of precipitation types? Atmos. Res. 119, 56–61 (2013).
Google Scholar
Formayer, H. & Fritz, A. Temperature dependency of hourly precipitation intensities – surface versus cloud layer temperature. Int. J. Climatol. 37, 1–10 (2017).
Google Scholar
Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).
Google Scholar
Lenderink, G., Mok, H. Y., Lee, T. C. & Van Oldenborgh, G. J. Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and The Netherlands. Hydrol. Earth Syst. Sci. 15, 3033–3041 (2011).
Google Scholar
Lewis, E. et al. GSDR: a global sub-daily rainfall dataset. J. Clim. 32, 4715–4729 (2019).
Google Scholar
Lanza, L. G. & Vuerich, E. The WMO field intercomparison of rain intensity gauges. Atmospheric Res. 94, 534–543 (2009).
Google Scholar
Cauteruccio, A., Colli, M., Stagnaro, M., Lanza, L. G. & Vuerich, E. in Springer Handbook of Atmospheric Measurements (ed. Foken, T.) 359–400 (Springer, 2021).
Sivapalan, M., Blöschl, G., Merz, R. & Gutknecht, D. Linking flood frequency to long‐term water balance: incorporating effects of seasonality. Water Resour. Res. 41, 2004WR003439 (2005).
Google Scholar
Breinl, K., Lun, D., Müller-Thomy, H. & Blöschl, G. Understanding the relationship between rainfall and flood probabilities through combined intensity–duration–frequency analysis. J. Hydrol. 602, 126759 (2021).
Google Scholar
Brunetti, M. et al. Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J. Geophys. Res. 111, D11107 (2006).
Google Scholar
Haslinger, K., Holawe, F. & Blöschl, G. Spatial characteristics of precipitation shortfalls in the greater Alpine region—a data-based analysis from observations. Theor. Appl. Climatol. 136, 717–731 (2019).
Google Scholar
Haslinger, K., Hofstätter, M., Schöner, W. & Blöschl, G. Changing summer precipitation variability in the Alpine region: on the role of scale dependent atmospheric drivers. Clim. Dyn. 57, 1009–1021 (2021).
Google Scholar
Bladé, I., Liebmann, B., Fortuny, D. & Van Oldenborgh, G. J. Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Clim. Dyn. 39, 709–727 (2012).
Google Scholar
Ghosh, R., Müller, W. A., Baehr, J. & Bader, J. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating. Clim. Dyn. 48, 3547–3563 (2017).
Google Scholar
Awan, N. K. & Formayer, H. Cutoff low systems and their relevance to large-scale extreme precipitation in the European Alps. Theor. Appl. Climatol. 129, 149–158 (2017).
Google Scholar
van Bebber, W. Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der deutschen Seewarte für den Zeitraum 1875–1890 (1891).
Coumou, D., Di Capua, G., Vavrus, S., Wang, L. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).
Google Scholar
Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348, 324–327 (2015).
Google Scholar
Francis, J. A., Skific, N. & Vavrus, S. J. Increased persistence of large-scale circulation regimes over Asia in the era of amplified Arctic warming, past and future. Sci. Rep. 10, 14953 (2020).
Google Scholar
Screen, J. A. & Simmonds, I. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 40, 959–964 (2013).
Google Scholar
Barnes, E. A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 40, 4734–4739 (2013).
Google Scholar
Kang, J. M., Shaw, T. A. & Sun, L. Arctic sea ice loss weakens Northern Hemisphere summertime storminess but not until the late 21st century. Geophys. Res. Lett. 50, e2022GL102301 (2023).
Google Scholar
Guilbert, J., Betts, A. K., Rizzo, D. M., Beckage, B. & Bomblies, A. Characterization of increased persistence and intensity of precipitation in the northeastern United States. Geophys. Res. Lett. 42, 1888–1893 (2015).
Google Scholar
Du, H. et al. Extreme precipitation on consecutive days occurs more often in a warming climate. Bull. Am. Meteorol. Soc. 103, E1130–E1145 (2022).
Google Scholar
Stjern, C. W. et al. The time scales of climate responses to carbon dioxide and aerosols. J. Clim. 36, 3537–3551 (2023).
Google Scholar
Sillmann, J. et al. Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. npj Clim. Atmos. Sci. 2, 24 (2019).
Google Scholar
Risser, M. D. et al. Anthropogenic aerosols mask increases in US rainfall by greenhouse gases. Nat. Commun. 15, 1318 (2024).
Google Scholar
Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).
Google Scholar
Park, I.-H. & Min, S.-K. Role of convective precipitation in the relationship between subdaily extreme precipitation and temperature. J. Clim. 30, 9527–9537 (2017).
Google Scholar
Duethmann, D. & Blöschl, G. Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. Hydrol. Earth Syst. Sci. 22, 5143–5158 (2018).
Vicente-Serrano, S. M. et al. Recent changes of relative humidity: regional connections with land and ocean processes. Earth Syst. Dyn. 9, 915–937 (2018).
Google Scholar
Schroeer, K. & Kirchengast, G. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective. Clim. Dyn. 50, 3981–3994 (2018).
Google Scholar
Madsen, H., Arnbjerg-Nielsen, K. & Mikkelsen, P. S. Update of regional intensity–duration–frequency curves in Denmark: tendency towards increased storm intensities. Atmos. Res. 92, 343–349 (2009).
Google Scholar
Xiao, C., Wu, P., Zhang, L. & Song, L. Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep. 6, 38506 (2016).
Google Scholar
Allan, R. P. et al. Advances in understanding large‐scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 1472, 49–75 (2020).
Google Scholar
Ali, H. et al. Towards quantifying the uncertainty in estimating observed scaling rates. Geophys. Res. Lett. 49, e2022GL099138 (2022).
Google Scholar
Formetta, G., Marra, F., Dallan, E., Zaramella, M. & Borga, M. Differential orographic impact on sub-hourly, hourly, and daily extreme precipitation. Adv. Water Resour. 159, 104085 (2022).
Google Scholar
Marra, F., Armon, M., Borga, M. & Morin, E. Orographic effect on extreme precipitation statistics peaks at hourly time scales. Geophys. Res. Lett. 48, e2020GL091498 (2021).
Google Scholar
Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 9, 24–28 (2016).
Google Scholar
Blöschl, G. Flood generation: process patterns from the raindrop to the ocean. Hydrol. Earth Syst. Sci. 26, 2469–2480 (2022).
Google Scholar
Brunner, M. I. et al. An extremeness threshold determines the regional response of floods to changes in rainfall extremes. Commun. Earth Environ. 2, 173 (2021).
Google Scholar
Hall, J. et al. Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol. Earth Syst. Sci. 18, 2735–2772 (2014).
Google Scholar
Archfield, S. A., Hirsch, R. M., Viglione, A. & Blöschl, G. Fragmented patterns of flood change across the United States. Geophys. Res. Lett. 43, 10232–10239 (2016).
Google Scholar
Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).
Google Scholar
Yang, L. et al. Climate more important for Chinese flood changes than reservoirs and land use. Geophys. Res. Lett. 48, e2021GL093061 (2021).
Google Scholar
Chagas, V. B. P., Chaffe, P. L. B. & Blöschl, G. Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 13, 5136 (2022).
Google Scholar
Bertola, M., Viglione, A., Lun, D., Hall, J. & Blöschl, G. Flood trends in Europe: are changes in small and big floods different? Hydrol. Earth Syst. Sci. 24, 1805–1822 (2020).
Google Scholar
Bertola, M. et al. Do small and large floods have the same drivers of change? A regional attribution analysis in Europe. Hydrol. Earth Syst. Sci. 25, 1347–1364 (2021).
Google Scholar
International Commission on large dams. World Register of Dams General Synthesis www.icold-cigb.org/GB/world_register/general_synthesis.asp (2024).
Lun, D., Fischer, S., Viglione, A. & Blöschl, G. Significance testing of rank cross-correlations between autocorrelated time series with short-range dependence. J. Appl. Stat. 50, 2934–2950 (2023).
Google Scholar
Auer, I. et al. HISTALP—historical instrumental climatological surface time series of the greater Alpine region. Int. J. Climatol. 27, 17–46 (2007).
Google Scholar
Nemec, J., Gruber, C., Chimani, B. & Auer, I. Trends in extreme temperature indices in Austria based on a new homogenised dataset. Int. J. Climatol. 33, 1538–1550 (2013).
Google Scholar
Lanza, L., Leroy, M., Alexandropoulos, C., Stagi, L. & Wauben, W. The WMO Laboratory Intercomparison of Rainfall Intensity Gauges: Final Report. Instruments and Observing Methods Report No. 84 (World Meteorological Organization, 2006).
World Meteorological Organization (WMO). WMO Field Intercomparison of Rainfall Intensity Gauges. 290 (2009).
Hofstätter, M., Chimani, B., Lexer, A. & Blöschl, G. A new classification scheme of European cyclone tracks with relevance to precipitation. Water Resour. Res. 52, 7086–7104 (2016).
Google Scholar
Wasko, C., Sharma, A. & Johnson, F. Does storm duration modulate the extreme precipitation-temperature scaling relationship? Geophys. Res. Lett. 42, 8783–8790 (2015).
Google Scholar
Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).
Google Scholar
Bao, J., Sherwood, S. C., Alexander, L. V. & Evans, J. P. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Change 7, 128–132 (2017).
Google Scholar
Zhang, S., Stier, P., Dagan, G., Zhou, C. & Wang, M. Sea surface warming patterns drive hydrological sensitivity uncertainties. Nat. Clim. Change 13, 545–553 (2023).
Google Scholar
Schwander, M. et al. Reconstruction of Central European daily weather types back to 1763. Int. J. Climatol. 37, 30–44 (2017).
Google Scholar
Pfister, L., Wilhelm, L., Brugnara, Y., Imfeld, N. & Brönnimann, S. Weather type reconstruction using machine learning approaches. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2024-1346 (2024).
Haslinger, K. et al. Disentangling drivers of meteorological droughts in the European greater Alpine region during the last two centuries. J. Geophys. Res. Atmos. 124, 12404–12425 (2019).
Google Scholar
Richardson, D., Kilsby, C. G., Fowler, H. J. & Bárdossy, A. Weekly to multi‐month persistence in sets of daily weather patterns over Europe and the North Atlantic Ocean. Int. J. Climatol. 39, 2041–2056 (2019).
Google Scholar
Jordan, P. & Talkner, P. A seasonal Markov chain model for the weather in the Central Alps. Tellus Dyn. Meteorol. Oceanogr. 52, 455–469 (2000).
Google Scholar
Wernli, H. & Schwierz, C. Surface cyclones in the ERA-40 dataset (1958–2001). Part I: novel identification method and global climatology. J. Atmos. Sci. 63, 2486–2507 (2006).
Google Scholar
Sigl, M. et al. 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers. Cryosphere 12, 3311–3331 (2018).
Google Scholar
Greilinger, M., Schöner, W., Winiwarter, W. & Kasper-Giebl, A. Temporal changes of inorganic ion deposition in the seasonal snow cover for the Austrian Alps (1983–2014). Atmos. Environ. 132, 141–152 (2016).
Google Scholar
Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).
Google Scholar
Bertola, M. et al. Megafloods in Europe can be anticipated from observations in hydrologically similar catchments. Nat. Geosci. 16, 982–988 (2023).
Google Scholar
Haslinger, K. et al. Data and code for ‘Increasing hourly heavy rainfall in Austria reflected in flood changes’. Zenodo https://doi.org/10.5281/zenodo.12684482 (2025).