Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550 (1964).
Google Scholar
Larkin, A. I. & Ovchinnikov, Y. N. Nonuniform state of superconductors. Zh. Eksp. Teor. Fiz. 47, 1136–1146 (1964).
Google Scholar
Himeda, A., Kato, T. & Ogata, M. Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional t–t′–J model. Phys. Rev. Lett. 88, 117001 (2002).
Google Scholar
Berg, E. et al. Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett. 99, 127003 (2007).
Google Scholar
Lee, P. A. Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. X 4, 031017 (2014).
Google Scholar
Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).
Google Scholar
Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).
Google Scholar
Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).
Google Scholar
Hamidian, M. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).
Google Scholar
Ruan, W. et al. Visualization of the periodic modulation of Cooper pairing in a cuprate superconductor. Nat. Phys. 14, 1178–1182 (2018).
Google Scholar
Du, Z. et al. Imaging the energy gap modulations of the cuprate pair-density-wave state. Nature 580, 65–70 (2020).
Google Scholar
Liu, X., Chong, Y. X., Sharma, R. & Davis, J. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).
Google Scholar
Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).
Google Scholar
Wang, S. et al. Scattering interference signature of a pair density wave state in the cuprate pseudogap phase. Nat. Commun. 12, 6087 (2021).
Google Scholar
Chen, W. et al. Identification of a nematic pair density wave state in Bi2Sr2CaCu2O8+x. Proc. Natl Acad. Sci. USA 119, e2206481119 (2022).
Google Scholar
Gu, Q. et al. Detection of a pair density wave state in UTe2. Nature 618, 921–927 (2023).
Google Scholar
Zhao, H. et al. Smectic pair-density-wave order in EuRbFe4As4. Nature 618, 940–945 (2023).
Google Scholar
Liu, Y. et al. Pair density wave state in a monolayer high-Tc iron-based superconductor. Nature 618, 934–939 (2023).
Google Scholar
Wei, L.-X. et al. Discovery of smectic charge and pair-density-wave orders in topological monolayer 1T′-MoTe2. Preprint at https://arxiv.org/abs/2308.11101 (2023).
Schwemmer, T. et al. Sublattice modulated superconductivity in the kagome Hubbard model. Phys. Rev. B 110, 024501 (2024).
Google Scholar
Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).
Google Scholar
Fernandes, R., Chubukov, A. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).
Google Scholar
Yin, Z., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Mater. 10, 932–935 (2011).
Google Scholar
Checkelsky, J. G., Bernevig, B. A., Coleman, P., Si, Q. & Paschen, S. Flat bands, strange metals and the Kondo effect. Nat. Rev. Mater. 9, 509–526 (2024).
Google Scholar
Lubashevsky, Y., Lahoud, E., Chashka, K., Podolsky, D. & Kanigel, A. Shallow pockets and very strong coupling superconductivity in FeSexTe1−x. Nat. Phys. 8, 309–312 (2012).
Google Scholar
Shibauchi, T., Hanaguri, T. & Matsuda, Y. Exotic superconducting states in FeSe-based materials. J. Phys. Soc. Jpn 89, 102002 (2020).
Google Scholar
Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).
Google Scholar
Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).
Google Scholar
Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-based superconductor. Science 367, 104–108 (2020).
Google Scholar
Tang, F. et al. Quasi-2D superconductivity in FeTe0.55Se0.45 ultrathin film. J. Phys. Condens. Matter 31, 265702 (2019).
Google Scholar
Morfoot, A. B. et al. Resurgence of superconductivity and the role of dxy hole band in FeSe1−xTex. Commun. Phys. 6, 362 (2023).
Google Scholar
Chen, M. et al. Direct visualization of sign-reversal s± superconducting gaps in FeTe0.55Se0.45. Phys. Rev. B 99, 014507 (2019).
Google Scholar
Cho, D., Bastiaans, K., Chatzopoulos, D., Gu, G. & Allan, M. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 571, 541–545 (2019).
Google Scholar
Lawler, M. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).
Google Scholar
Fujita, K. et al. Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates. Proc. Natl Acad. Sci. USA 111, E3026–E3032 (2014).
Google Scholar
Böhmer, A. E., Chu, J.-H., Lederer, S. & Yi, M. Nematicity and nematic fluctuations in iron-based superconductors. Nat. Phys. 18, 1412–1419 (2022).
Google Scholar
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Google Scholar
Ronning, F. et al. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature 548, 313–317 (2017).
Google Scholar
Jiang, K. et al. Kagome superconductors AV3Sb5 (A = K, Rb, Cs). Natl Sci. Rev. 10, nwac199 (2023).
Google Scholar
Li, J. et al. Reemergeing electronic nematicity in heavily hole-doped Fe-based superconductors. Preprint at https://arxiv.org/abs/1611.04694 (2016).
Liu, X. et al. Evidence of nematic order and nodal superconducting gap along [110] direction in RbFe2As2. Nat. Commun. 10, 1039 (2019).
Google Scholar
Ishida, K. et al. Novel electronic nematicity in heavily hole-doped iron pnictide superconductors. Proc. Natl Acad. Sci. USA 117, 6424–6429 (2020).
Google Scholar
Wei, T. et al. Observation of superconducting pair density modulation within lattice unit cell. Chin. Phys. Lett. 42, 027404 (2025).
Zhang, Y., Yang, L., Liu, C., Zhang, W. & Fu, Y.-S. Visualizing uniform lattice-scale pair density wave in single-layer FeSe/SrTiO3 films. Preprint at https://arxiv.org/abs/2406.05693 (2024).
Wen, J. et al. Short-range incommensurate magnetic order near the superconducting phase boundary in Fe1+δTe1−xSex. Phys. Rev. B 80, 104506 (2009).
Google Scholar
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
Google Scholar
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
Google Scholar
Ishida, K. et al. Pure nematic quantum critical point accompanied by a superconducting dome. Proc. Natl Acad. Sci. USA 119, e2110501119 (2022).
Google Scholar
Hou, Q., Sun, L., Sun, Y. & Shi, Z. Review of single crystal synthesis of 11 iron-based superconductors. Materials 16, 4895 (2023).
Google Scholar
Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).
Google Scholar
Zhao, H. et al. Nematic transition and nanoscale suppression of superconductivity in Fe(Te,Se). Nat. Phys. 17, 903–908 (2021).
Google Scholar
Agterberg, D. & Tsunetsugu, H. Dislocations and vortices in pair-density-wave superconductors. Nat. Phys. 4, 639–642 (2008).
Google Scholar
Berg, E., Fradkin, E. & Kivelson, S. A. Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors. Nat. Phys. 5, 830–833 (2009).
Google Scholar
Radzihovsky, L. & Vishwanath, A. Quantum liquid crystals in an imbalanced Fermi gas: fluctuations and fractional vortices in Larkin-Ovchinnikov states. Phys. Rev. Lett. 103, 010404 (2009).
Google Scholar
Mross, D. F. & Senthil, T. Spin- and pair-density-wave glasses. Phys. Rev. X 5, 031008 (2015).
Google Scholar
Aishwarya, A. et al. Melting of the charge density wave by generation of pairs of topological defects in UTe2. Nat. Phys. 20, 964–969 (2024).
Google Scholar
Prozorov, R. et al. Intrinsic pinning on structural domains in underdoped single crystals of Ba(Fe1−xCox)2As2. Phys. Rev. B 80, 174517 (2009).
Google Scholar
Rößler, S. et al. Nematic state of the FeSe superconductor. Phys. Rev. B 105, 064505 (2022).
Google Scholar
Jenkins, N. et al. Imaging the essential role of spin fluctuations in high-Tc superconductivity. Phys. Rev. Lett. 103, 227001 (2009).
Google Scholar
Devarakonda, A. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature 631, 526–530 (2024).
Google Scholar
Gao, Z.-Q., Lin, Y.-P. & Lee, D.-H. Pair-breaking scattering interference as a mechanism for superconducting gap modulation. Phys. Rev. B 110, 224509 (2024).
Google Scholar
Kong, L. et al. Dataset: Cooper-pair density modulation state in an iron-based superconductor. Zenodo https://doi.org/10.5281/zenodo.14523285 (2024).